Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of aerosols on tropospheric oxidants : A global model study

Identifieur interne : 000219 ( PascalFrancis/Corpus ); précédent : 000218; suivant : 000220

Effects of aerosols on tropospheric oxidants : A global model study

Auteurs : XUEXI TIE ; Guy Brasseur ; Louisa Emmons ; Larry Horowitz ; Douglas Kinnison

Source :

RBID : Pascal:02-0060291

Descripteurs français

English descriptors

Abstract

The global distributions of sulfate and soot particles in the atmosphere are calculated, and the effect of aerosol particles on tropospheric oxidants is studied using a global chemical/transport/ aerosol model. The model is developed in the framework of the National Center for Atmospheric Research (NCAR) global three-dimensional chemical/transport model (Model for Ozone and Related Chemical Tracers (MOZART)) In addition to the gas-phase photochemistry implemented in the MOZART model, the present study also accounts for the formation of sulfate and black carbon aerosols as well as for heterogeneous reactions on particles. The simulated global sulfate aerosol distributions and seasonal variation are compared with observations. The seasonal variation of sulfate aerosols is in agreement with measurements, except in the Arctic region. The calculated vertical profiles of sulfate aerosol agree well with the observations over North America. In the case of black carbon the calculated surface distribution is in fair agreement with observations. The effects of aerosol formation and heterogeneous reactions on the surface of sulfate aerosols are studied. The model calculations show the following: (1) The concentration of H2O2 is reduced when sulfate aerosols are formed due to the reaction of SO2 + H2O2 in cloud droplets. The gas-phase reaction SO2 + OH converts OH to HO2, but the reduction of OH and enhancement of HO2 are insignificant (< 3%). (2) The heterogeneous reaction of HO2 on the surface of sulfate aerosols produces up to 10% reduction of hydroperoxyl radical (HO2) with an uptake coefficient of 0.2. However, this uptake coefficient could be overestimated, and the results should be regard as an upper limit estimation. (3) The N2O5 reaction on the surface of sulfate aerosols leads to an 80% reduction of NOx at middle to high latitudes during winter. Because ozone production efficiency is low in winter, ozone decreases by only 10% as a result of this reaction. However, during summer the N2O5reaction reduces NOx by 15% and O3 by 8-10% at middle to high latitudes. (4) The heterogeneous reaction of CH2O on sulfate aerosols with an upper limit uptake coefficient (y = 0.01) leads to an 80 to 90% decrease in CH2O and 8 to 10% reduction of HO2 at middle to high latitudes during winter. Many uncertainties remain in our understanding of heterogeneous chemical processes and in the estimate of kinetic parameters. This model study should therefore be regarded as exploratory and subject to further improvements before final conclusions can be made.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 106
A06       @2 D19
A08 01  1  ENG  @1 Effects of aerosols on tropospheric oxidants : A global model study
A11 01  1    @1 XUEXI TIE
A11 02  1    @1 BRASSEUR (Guy)
A11 03  1    @1 EMMONS (Louisa)
A11 04  1    @1 HOROWITZ (Larry)
A11 05  1    @1 KINNISON (Douglas)
A14 01      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 5 aut.
A14 02      @1 Geophysical Fluid Dynamics Laboratory, Princeton University. @2 Princeton, New Jersey @3 USA @Z 4 aut.
A20       @1 22931-22964
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000099817060260
A44       @0 0000 @1 © 2002 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 02-0060291
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 The global distributions of sulfate and soot particles in the atmosphere are calculated, and the effect of aerosol particles on tropospheric oxidants is studied using a global chemical/transport/ aerosol model. The model is developed in the framework of the National Center for Atmospheric Research (NCAR) global three-dimensional chemical/transport model (Model for Ozone and Related Chemical Tracers (MOZART)) In addition to the gas-phase photochemistry implemented in the MOZART model, the present study also accounts for the formation of sulfate and black carbon aerosols as well as for heterogeneous reactions on particles. The simulated global sulfate aerosol distributions and seasonal variation are compared with observations. The seasonal variation of sulfate aerosols is in agreement with measurements, except in the Arctic region. The calculated vertical profiles of sulfate aerosol agree well with the observations over North America. In the case of black carbon the calculated surface distribution is in fair agreement with observations. The effects of aerosol formation and heterogeneous reactions on the surface of sulfate aerosols are studied. The model calculations show the following: (1) The concentration of H2O2 is reduced when sulfate aerosols are formed due to the reaction of SO2 + H2O2 in cloud droplets. The gas-phase reaction SO2 + OH converts OH to HO2, but the reduction of OH and enhancement of HO2 are insignificant (< 3%). (2) The heterogeneous reaction of HO2 on the surface of sulfate aerosols produces up to 10% reduction of hydroperoxyl radical (HO2) with an uptake coefficient of 0.2. However, this uptake coefficient could be overestimated, and the results should be regard as an upper limit estimation. (3) The N2O5 reaction on the surface of sulfate aerosols leads to an 80% reduction of NOx at middle to high latitudes during winter. Because ozone production efficiency is low in winter, ozone decreases by only 10% as a result of this reaction. However, during summer the N2O5reaction reduces NOx by 15% and O3 by 8-10% at middle to high latitudes. (4) The heterogeneous reaction of CH2O on sulfate aerosols with an upper limit uptake coefficient (y = 0.01) leads to an 80 to 90% decrease in CH2O and 8 to 10% reduction of HO2 at middle to high latitudes during winter. Many uncertainties remain in our understanding of heterogeneous chemical processes and in the estimate of kinetic parameters. This model study should therefore be regarded as exploratory and subject to further improvements before final conclusions can be made.
C02 01  X    @0 001E02D06
C03 01  X  FRE  @0 Aérosol @5 26
C03 01  X  ENG  @0 Aerosols @5 26
C03 01  X  SPA  @0 Aerosol @5 26
C03 02  X  FRE  @0 Troposphère @5 27
C03 02  X  ENG  @0 Troposphere @5 27
C03 02  X  SPA  @0 Troposfera @5 27
C03 03  X  FRE  @0 Oxydant @5 28
C03 03  X  ENG  @0 Oxidant @5 28
C03 03  X  SPA  @0 Oxidante @5 28
C03 04  X  FRE  @0 Suie @5 30
C03 04  X  ENG  @0 Soot @5 30
C03 04  X  SPA  @0 Hollín @5 30
C03 05  X  FRE  @0 Distribution planétaire @5 31
C03 05  X  ENG  @0 Planetary distribution @5 31
C03 05  X  SPA  @0 Distribución planetaria @5 31
C03 06  X  FRE  @0 Azote pentaoxyde @2 NK @5 32
C03 06  X  ENG  @0 Nitrogen pentoxide @2 NK @5 32
C03 06  X  SPA  @0 Nitrógeno pentaóxido @2 NK @5 32
C03 07  X  FRE  @0 Carbone particulaire @5 33
C03 07  X  ENG  @0 Particulate carbon @5 33
C03 07  X  SPA  @0 Carbono particular @5 33
C03 08  X  FRE  @0 Réaction surface @5 34
C03 08  X  ENG  @0 Surface reaction @5 34
C03 08  X  SPA  @0 Reacción superficie @5 34
C03 09  X  FRE  @0 Réaction hétérogène @5 35
C03 09  X  ENG  @0 Heterogeneous reaction @5 35
C03 09  X  SPA  @0 Reacción heterogénea @5 35
C03 10  X  FRE  @0 Variation saisonnière @5 36
C03 10  X  ENG  @0 Seasonal variation @5 36
C03 10  X  SPA  @0 Variación estacional @5 36
C03 11  X  FRE  @0 Répartition altitudinale @5 37
C03 11  X  ENG  @0 Altitudinal distribution @5 37
C03 11  X  SPA  @0 Distribución de altitud @5 37
C03 12  X  FRE  @0 Soufre dioxyde @2 NK @2 FX @5 38
C03 12  X  ENG  @0 Sulfur dioxide @2 NK @2 FX @5 38
C03 12  X  SPA  @0 Dióxido sulfúrico @2 NK @2 FX @5 38
C03 13  X  FRE  @0 Sulfate @2 NA @5 39
C03 13  X  ENG  @0 Sulfates @2 NA @5 39
C03 13  X  SPA  @0 Sulfato @2 NA @5 39
C03 14  X  FRE  @0 Nuage @5 40
C03 14  X  ENG  @0 Clouds @5 40
C03 14  X  SPA  @0 Nube @5 40
C03 15  X  FRE  @0 Gouttelette @5 41
C03 15  X  ENG  @0 Droplet @5 41
C03 15  X  SPA  @0 Gotita @5 41
C03 16  X  FRE  @0 Captation @5 42
C03 16  X  ENG  @0 Uptake @5 42
C03 16  X  SPA  @0 Captación @5 42
C03 17  X  FRE  @0 Etude sur modèle @5 45
C03 17  X  ENG  @0 Model study @5 45
C03 17  X  SPA  @0 Estudio sobre modelo @5 45
C03 18  3  FRE  @0 Hydrogène peroxyde @2 NK @5 83
C03 18  3  ENG  @0 Hydrogen peroxide @2 NK @5 83
C03 19  3  FRE  @0 Radical hydroxyle @2 NK @5 84
C03 19  3  ENG  @0 Hydroxyl radicals @2 NK @5 84
C03 20  3  FRE  @0 Radical hydroperoxyle @2 NK @5 85
C03 20  3  ENG  @0 Hydroperoxy radicals @2 NK @5 85
N21       @1 028

Format Inist (serveur)

NO : PASCAL 02-0060291 INIST
ET : Effects of aerosols on tropospheric oxidants : A global model study
AU : XUEXI TIE; BRASSEUR (Guy); EMMONS (Louisa); HOROWITZ (Larry); KINNISON (Douglas)
AF : National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 5 aut.); Geophysical Fluid Dynamics Laboratory, Princeton University./Princeton, New Jersey/Etats-Unis (4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2001; Vol. 106; No. D19; Pp. 22931-22964; Bibl. 1 p.3/4
LA : Anglais
EA : The global distributions of sulfate and soot particles in the atmosphere are calculated, and the effect of aerosol particles on tropospheric oxidants is studied using a global chemical/transport/ aerosol model. The model is developed in the framework of the National Center for Atmospheric Research (NCAR) global three-dimensional chemical/transport model (Model for Ozone and Related Chemical Tracers (MOZART)) In addition to the gas-phase photochemistry implemented in the MOZART model, the present study also accounts for the formation of sulfate and black carbon aerosols as well as for heterogeneous reactions on particles. The simulated global sulfate aerosol distributions and seasonal variation are compared with observations. The seasonal variation of sulfate aerosols is in agreement with measurements, except in the Arctic region. The calculated vertical profiles of sulfate aerosol agree well with the observations over North America. In the case of black carbon the calculated surface distribution is in fair agreement with observations. The effects of aerosol formation and heterogeneous reactions on the surface of sulfate aerosols are studied. The model calculations show the following: (1) The concentration of H2O2 is reduced when sulfate aerosols are formed due to the reaction of SO2 + H2O2 in cloud droplets. The gas-phase reaction SO2 + OH converts OH to HO2, but the reduction of OH and enhancement of HO2 are insignificant (< 3%). (2) The heterogeneous reaction of HO2 on the surface of sulfate aerosols produces up to 10% reduction of hydroperoxyl radical (HO2) with an uptake coefficient of 0.2. However, this uptake coefficient could be overestimated, and the results should be regard as an upper limit estimation. (3) The N2O5 reaction on the surface of sulfate aerosols leads to an 80% reduction of NOx at middle to high latitudes during winter. Because ozone production efficiency is low in winter, ozone decreases by only 10% as a result of this reaction. However, during summer the N2O5reaction reduces NOx by 15% and O3 by 8-10% at middle to high latitudes. (4) The heterogeneous reaction of CH2O on sulfate aerosols with an upper limit uptake coefficient (y = 0.01) leads to an 80 to 90% decrease in CH2O and 8 to 10% reduction of HO2 at middle to high latitudes during winter. Many uncertainties remain in our understanding of heterogeneous chemical processes and in the estimate of kinetic parameters. This model study should therefore be regarded as exploratory and subject to further improvements before final conclusions can be made.
CC : 001E02D06
FD : Aérosol; Troposphère; Oxydant; Suie; Distribution planétaire; Azote pentaoxyde; Carbone particulaire; Réaction surface; Réaction hétérogène; Variation saisonnière; Répartition altitudinale; Soufre dioxyde; Sulfate; Nuage; Gouttelette; Captation; Etude sur modèle; Hydrogène peroxyde; Radical hydroxyle; Radical hydroperoxyle
ED : Aerosols; Troposphere; Oxidant; Soot; Planetary distribution; Nitrogen pentoxide; Particulate carbon; Surface reaction; Heterogeneous reaction; Seasonal variation; Altitudinal distribution; Sulfur dioxide; Sulfates; Clouds; Droplet; Uptake; Model study; Hydrogen peroxide; Hydroxyl radicals; Hydroperoxy radicals
SD : Aerosol; Troposfera; Oxidante; Hollín; Distribución planetaria; Nitrógeno pentaóxido; Carbono particular; Reacción superficie; Reacción heterogénea; Variación estacional; Distribución de altitud; Dióxido sulfúrico; Sulfato; Nube; Gotita; Captación; Estudio sobre modelo
LO : INIST-3144.354000099817060260
ID : 02-0060291

Links to Exploration step

Pascal:02-0060291

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of aerosols on tropospheric oxidants : A global model study</title>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy" sort="Brasseur, Guy" uniqKey="Brasseur G" first="Guy" last="Brasseur">Guy Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, Louisa" sort="Emmons, Louisa" uniqKey="Emmons L" first="Louisa" last="Emmons">Louisa Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry" sort="Horowitz, Larry" uniqKey="Horowitz L" first="Larry" last="Horowitz">Larry Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, Princeton University.</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kinnison, Douglas" sort="Kinnison, Douglas" uniqKey="Kinnison D" first="Douglas" last="Kinnison">Douglas Kinnison</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0060291</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 02-0060291 INIST</idno>
<idno type="RBID">Pascal:02-0060291</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000219</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Effects of aerosols on tropospheric oxidants : A global model study</title>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy" sort="Brasseur, Guy" uniqKey="Brasseur G" first="Guy" last="Brasseur">Guy Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, Louisa" sort="Emmons, Louisa" uniqKey="Emmons L" first="Louisa" last="Emmons">Louisa Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry" sort="Horowitz, Larry" uniqKey="Horowitz L" first="Larry" last="Horowitz">Larry Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, Princeton University.</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kinnison, Douglas" sort="Kinnison, Douglas" uniqKey="Kinnison D" first="Douglas" last="Kinnison">Douglas Kinnison</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerosols</term>
<term>Altitudinal distribution</term>
<term>Clouds</term>
<term>Droplet</term>
<term>Heterogeneous reaction</term>
<term>Hydrogen peroxide</term>
<term>Hydroperoxy radicals</term>
<term>Hydroxyl radicals</term>
<term>Model study</term>
<term>Nitrogen pentoxide</term>
<term>Oxidant</term>
<term>Particulate carbon</term>
<term>Planetary distribution</term>
<term>Seasonal variation</term>
<term>Soot</term>
<term>Sulfates</term>
<term>Sulfur dioxide</term>
<term>Surface reaction</term>
<term>Troposphere</term>
<term>Uptake</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Aérosol</term>
<term>Troposphère</term>
<term>Oxydant</term>
<term>Suie</term>
<term>Distribution planétaire</term>
<term>Azote pentaoxyde</term>
<term>Carbone particulaire</term>
<term>Réaction surface</term>
<term>Réaction hétérogène</term>
<term>Variation saisonnière</term>
<term>Répartition altitudinale</term>
<term>Soufre dioxyde</term>
<term>Sulfate</term>
<term>Nuage</term>
<term>Gouttelette</term>
<term>Captation</term>
<term>Etude sur modèle</term>
<term>Hydrogène peroxyde</term>
<term>Radical hydroxyle</term>
<term>Radical hydroperoxyle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The global distributions of sulfate and soot particles in the atmosphere are calculated, and the effect of aerosol particles on tropospheric oxidants is studied using a global chemical/transport/ aerosol model. The model is developed in the framework of the National Center for Atmospheric Research (NCAR) global three-dimensional chemical/transport model (Model for Ozone and Related Chemical Tracers (MOZART)) In addition to the gas-phase photochemistry implemented in the MOZART model, the present study also accounts for the formation of sulfate and black carbon aerosols as well as for heterogeneous reactions on particles. The simulated global sulfate aerosol distributions and seasonal variation are compared with observations. The seasonal variation of sulfate aerosols is in agreement with measurements, except in the Arctic region. The calculated vertical profiles of sulfate aerosol agree well with the observations over North America. In the case of black carbon the calculated surface distribution is in fair agreement with observations. The effects of aerosol formation and heterogeneous reactions on the surface of sulfate aerosols are studied. The model calculations show the following: (1) The concentration of H
<sub>2</sub>
O
<sub>2</sub>
is reduced when sulfate aerosols are formed due to the reaction of SO
<sub>2</sub>
+ H
<sub>2</sub>
O
<sub>2</sub>
in cloud droplets. The gas-phase reaction SO
<sub>2</sub>
+ OH converts OH to HO
<sub>2</sub>
, but the reduction of OH and enhancement of HO
<sub>2</sub>
are insignificant (< 3%). (2) The heterogeneous reaction of HO
<sub>2</sub>
on the surface of sulfate aerosols produces up to 10% reduction of hydroperoxyl radical (HO
<sub>2</sub>
) with an uptake coefficient of 0.2. However, this uptake coefficient could be overestimated, and the results should be regard as an upper limit estimation. (3) The N
<sub>2</sub>
O
<sub>5</sub>
reaction on the surface of sulfate aerosols leads to an 80% reduction of NO
<sub>x</sub>
at middle to high latitudes during winter. Because ozone production efficiency is low in winter, ozone decreases by only 10% as a result of this reaction. However, during summer the N
<sub>2</sub>
O
<sub>5</sub>
reaction reduces NO
<sub>x</sub>
by 15% and O
<sub>3</sub>
by 8-10% at middle to high latitudes. (4) The heterogeneous reaction of CH
<sub>2</sub>
O on sulfate aerosols with an upper limit uptake coefficient (y = 0.01) leads to an 80 to 90% decrease in CH
<sub>2</sub>
O and 8 to 10% reduction of HO
<sub>2</sub>
at middle to high latitudes during winter. Many uncertainties remain in our understanding of heterogeneous chemical processes and in the estimate of kinetic parameters. This model study should therefore be regarded as exploratory and subject to further improvements before final conclusions can be made.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>106</s2>
</fA05>
<fA06>
<s2>D19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of aerosols on tropospheric oxidants : A global model study</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XUEXI TIE</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BRASSEUR (Guy)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EMMONS (Louisa)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOROWITZ (Larry)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KINNISON (Douglas)</s1>
</fA11>
<fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, Princeton University.</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>22931-22964</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000099817060260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0060291</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The global distributions of sulfate and soot particles in the atmosphere are calculated, and the effect of aerosol particles on tropospheric oxidants is studied using a global chemical/transport/ aerosol model. The model is developed in the framework of the National Center for Atmospheric Research (NCAR) global three-dimensional chemical/transport model (Model for Ozone and Related Chemical Tracers (MOZART)) In addition to the gas-phase photochemistry implemented in the MOZART model, the present study also accounts for the formation of sulfate and black carbon aerosols as well as for heterogeneous reactions on particles. The simulated global sulfate aerosol distributions and seasonal variation are compared with observations. The seasonal variation of sulfate aerosols is in agreement with measurements, except in the Arctic region. The calculated vertical profiles of sulfate aerosol agree well with the observations over North America. In the case of black carbon the calculated surface distribution is in fair agreement with observations. The effects of aerosol formation and heterogeneous reactions on the surface of sulfate aerosols are studied. The model calculations show the following: (1) The concentration of H
<sub>2</sub>
O
<sub>2</sub>
is reduced when sulfate aerosols are formed due to the reaction of SO
<sub>2</sub>
+ H
<sub>2</sub>
O
<sub>2</sub>
in cloud droplets. The gas-phase reaction SO
<sub>2</sub>
+ OH converts OH to HO
<sub>2</sub>
, but the reduction of OH and enhancement of HO
<sub>2</sub>
are insignificant (< 3%). (2) The heterogeneous reaction of HO
<sub>2</sub>
on the surface of sulfate aerosols produces up to 10% reduction of hydroperoxyl radical (HO
<sub>2</sub>
) with an uptake coefficient of 0.2. However, this uptake coefficient could be overestimated, and the results should be regard as an upper limit estimation. (3) The N
<sub>2</sub>
O
<sub>5</sub>
reaction on the surface of sulfate aerosols leads to an 80% reduction of NO
<sub>x</sub>
at middle to high latitudes during winter. Because ozone production efficiency is low in winter, ozone decreases by only 10% as a result of this reaction. However, during summer the N
<sub>2</sub>
O
<sub>5</sub>
reaction reduces NO
<sub>x</sub>
by 15% and O
<sub>3</sub>
by 8-10% at middle to high latitudes. (4) The heterogeneous reaction of CH
<sub>2</sub>
O on sulfate aerosols with an upper limit uptake coefficient (y = 0.01) leads to an 80 to 90% decrease in CH
<sub>2</sub>
O and 8 to 10% reduction of HO
<sub>2</sub>
at middle to high latitudes during winter. Many uncertainties remain in our understanding of heterogeneous chemical processes and in the estimate of kinetic parameters. This model study should therefore be regarded as exploratory and subject to further improvements before final conclusions can be made.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001E02D06</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Aérosol</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Aerosols</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Aerosol</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxydant</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Oxidant</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Oxidante</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Suie</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Soot</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Hollín</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Distribution planétaire</s0>
<s5>31</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Planetary distribution</s0>
<s5>31</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Distribución planetaria</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Azote pentaoxyde</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Nitrogen pentoxide</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Nitrógeno pentaóxido</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Carbone particulaire</s0>
<s5>33</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Particulate carbon</s0>
<s5>33</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Carbono particular</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Réaction surface</s0>
<s5>34</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Surface reaction</s0>
<s5>34</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Reacción superficie</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Réaction hétérogène</s0>
<s5>35</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Heterogeneous reaction</s0>
<s5>35</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Reacción heterogénea</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Variation saisonnière</s0>
<s5>36</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Seasonal variation</s0>
<s5>36</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Variación estacional</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Répartition altitudinale</s0>
<s5>37</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Altitudinal distribution</s0>
<s5>37</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Distribución de altitud</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Soufre dioxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>38</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Sulfur dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>38</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Dióxido sulfúrico</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Sulfate</s0>
<s2>NA</s2>
<s5>39</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Sulfates</s0>
<s2>NA</s2>
<s5>39</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Sulfato</s0>
<s2>NA</s2>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Nuage</s0>
<s5>40</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Clouds</s0>
<s5>40</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Nube</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Gouttelette</s0>
<s5>41</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Droplet</s0>
<s5>41</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Gotita</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Captation</s0>
<s5>42</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Uptake</s0>
<s5>42</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Captación</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Etude sur modèle</s0>
<s5>45</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Model study</s0>
<s5>45</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estudio sobre modelo</s0>
<s5>45</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Hydrogène peroxyde</s0>
<s2>NK</s2>
<s5>83</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Hydrogen peroxide</s0>
<s2>NK</s2>
<s5>83</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Radical hydroxyle</s0>
<s2>NK</s2>
<s5>84</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Hydroxyl radicals</s0>
<s2>NK</s2>
<s5>84</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Radical hydroperoxyle</s0>
<s2>NK</s2>
<s5>85</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Hydroperoxy radicals</s0>
<s2>NK</s2>
<s5>85</s5>
</fC03>
<fN21>
<s1>028</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 02-0060291 INIST</NO>
<ET>Effects of aerosols on tropospheric oxidants : A global model study</ET>
<AU>XUEXI TIE; BRASSEUR (Guy); EMMONS (Louisa); HOROWITZ (Larry); KINNISON (Douglas)</AU>
<AF>National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 5 aut.); Geophysical Fluid Dynamics Laboratory, Princeton University./Princeton, New Jersey/Etats-Unis (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2001; Vol. 106; No. D19; Pp. 22931-22964; Bibl. 1 p.3/4</SO>
<LA>Anglais</LA>
<EA>The global distributions of sulfate and soot particles in the atmosphere are calculated, and the effect of aerosol particles on tropospheric oxidants is studied using a global chemical/transport/ aerosol model. The model is developed in the framework of the National Center for Atmospheric Research (NCAR) global three-dimensional chemical/transport model (Model for Ozone and Related Chemical Tracers (MOZART)) In addition to the gas-phase photochemistry implemented in the MOZART model, the present study also accounts for the formation of sulfate and black carbon aerosols as well as for heterogeneous reactions on particles. The simulated global sulfate aerosol distributions and seasonal variation are compared with observations. The seasonal variation of sulfate aerosols is in agreement with measurements, except in the Arctic region. The calculated vertical profiles of sulfate aerosol agree well with the observations over North America. In the case of black carbon the calculated surface distribution is in fair agreement with observations. The effects of aerosol formation and heterogeneous reactions on the surface of sulfate aerosols are studied. The model calculations show the following: (1) The concentration of H
<sub>2</sub>
O
<sub>2</sub>
is reduced when sulfate aerosols are formed due to the reaction of SO
<sub>2</sub>
+ H
<sub>2</sub>
O
<sub>2</sub>
in cloud droplets. The gas-phase reaction SO
<sub>2</sub>
+ OH converts OH to HO
<sub>2</sub>
, but the reduction of OH and enhancement of HO
<sub>2</sub>
are insignificant (< 3%). (2) The heterogeneous reaction of HO
<sub>2</sub>
on the surface of sulfate aerosols produces up to 10% reduction of hydroperoxyl radical (HO
<sub>2</sub>
) with an uptake coefficient of 0.2. However, this uptake coefficient could be overestimated, and the results should be regard as an upper limit estimation. (3) The N
<sub>2</sub>
O
<sub>5</sub>
reaction on the surface of sulfate aerosols leads to an 80% reduction of NO
<sub>x</sub>
at middle to high latitudes during winter. Because ozone production efficiency is low in winter, ozone decreases by only 10% as a result of this reaction. However, during summer the N
<sub>2</sub>
O
<sub>5</sub>
reaction reduces NO
<sub>x</sub>
by 15% and O
<sub>3</sub>
by 8-10% at middle to high latitudes. (4) The heterogeneous reaction of CH
<sub>2</sub>
O on sulfate aerosols with an upper limit uptake coefficient (y = 0.01) leads to an 80 to 90% decrease in CH
<sub>2</sub>
O and 8 to 10% reduction of HO
<sub>2</sub>
at middle to high latitudes during winter. Many uncertainties remain in our understanding of heterogeneous chemical processes and in the estimate of kinetic parameters. This model study should therefore be regarded as exploratory and subject to further improvements before final conclusions can be made.</EA>
<CC>001E02D06</CC>
<FD>Aérosol; Troposphère; Oxydant; Suie; Distribution planétaire; Azote pentaoxyde; Carbone particulaire; Réaction surface; Réaction hétérogène; Variation saisonnière; Répartition altitudinale; Soufre dioxyde; Sulfate; Nuage; Gouttelette; Captation; Etude sur modèle; Hydrogène peroxyde; Radical hydroxyle; Radical hydroperoxyle</FD>
<ED>Aerosols; Troposphere; Oxidant; Soot; Planetary distribution; Nitrogen pentoxide; Particulate carbon; Surface reaction; Heterogeneous reaction; Seasonal variation; Altitudinal distribution; Sulfur dioxide; Sulfates; Clouds; Droplet; Uptake; Model study; Hydrogen peroxide; Hydroxyl radicals; Hydroperoxy radicals</ED>
<SD>Aerosol; Troposfera; Oxidante; Hollín; Distribución planetaria; Nitrógeno pentaóxido; Carbono particular; Reacción superficie; Reacción heterogénea; Variación estacional; Distribución de altitud; Dióxido sulfúrico; Sulfato; Nube; Gotita; Captación; Estudio sobre modelo</SD>
<LO>INIST-3144.354000099817060260</LO>
<ID>02-0060291</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000219 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000219 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:02-0060291
   |texte=   Effects of aerosols on tropospheric oxidants : A global model study
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023